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Abstract
We report our theoretical considerations motivated by Brillouin spectra of
polymethyl methacrylate (PMMA) films (d = 13 nm and d = 225 nm)
on Si(100) substrates. We have rederived a numerical calculational scheme
developed for considering Brillouin experiments on layer systems. It delivers
dispersion curves and intensities, indicated here by appropriate hatchings.
With backscattering geometry, we observed guided waves in agreement with
our calculations. The Brillouin peaks fall on the calculated segments of the
dispersion curves visible with the elasto-optic mechanism for 180◦ scattering
or for reflection-induced ‘A-scattering’ (called RI�A scattering by Krüger et al
(Krüger J K, Embs J, Brierley J and Jimenez R 1998 J. Phys. D: Appl. Phys. 31
1913)). The observed pseudo-guided waves for d = 225 nm were explained
using a model of a PMMA film fixed at one surface and free at the other.
For the d = 225 nm thick film the Brillouin data provided information on its
mechanical constants, but in the d = 13 nm case the dispersion curves are not
very sensitive to the film properties. The Brillouin data for d = 13 nm show
the direction of the sagittal plane with respect to the symmetry of the silicon
rather than indicating the properties of the PMMA film.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We used the basic work on elastic wave propagation in thin layers by Farnell and Adler [2].
They solved the equations of linear elasticity theory for plane layers perfectly bound to a sub-
strate half-space: system ‘slow on fast’ exhibit discrete eigenfrequencies, �j , depending on
the component of the wave vector k‖ parallel to the layer surface. Segments of the dispersion
curves �j(k‖) can be measured by means of Brillouin light scattering (BLS), and they can
give information on the elastic properties of the films [3–6]. Theoretical calculations of the
intensities of Brillouin peaks for a layer on a substrate half-space were given by Bortolani
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et al [7]. They considered the elasto-optic mechanism as well as the ripple scattering induced
by the acoustic phonons. Their theory explained very well concrete Brillouin spectra; see
e.g. [8, 9].

In this paper we present Brillouin spectra obtained with p-polarized light, for back-
scattering geometry, from PMMA layers (d = 13 nm and d = 225 nm) on Si(100) sub-
strates [10]. The recorded surface acoustic waves (SAWs) and pseudo-SAWs are the basis for
further theoretical considerations. For numerical examples we use the elastic constants and
densities of bulk isotropic PMMA and bulk cubic silicon.

First of all, we derive once more a numerical scheme (easy to handle) for calculating
dispersion curves and guided modes for a layered film on a substrate. We use transfer matrices
as described by Djafari-Rouhani et al [11] and in our own work [12–14]. We treat different
outer boundary conditions: (I) free-standing films; (II) a film deposited on a substrate half-
space; and (III) a film free at one surface and clamped at the other. Asymptotically for growing
k‖d, their dispersion curves coincide. We discuss the numerical problems that arise and the
applicability of the boundary conditions for actual regions of the (k‖d,�d) plane.

With growing layer thickness, the network of dispersion curves becomes denser. To
indicate the relevant segments, we show relative intensities by hatchings on the dispersion
curves. To explain our experiments it was sufficient to consider the elasto-optic mechanism,
even for unknown Pockels constants. For d � 1 µm the calculations show only two small
regions in the vicinity of �/k‖ = vL and � = 2vLkIn (kI , n, vL being the magnitude of the
incident light wave vector, the refractive index and the longitudinal sound velocity of PMMA).
This result agrees with the experimental observation of RI�A scattering from PET on silicon
(see Krüger et al [1]).

We show the sensitivity of the dispersion curves to the substrate, especially to the scattering
plane relative to the silicon symmetry, and we show the sensitivity to the constants of PMMA.
It turns out that the Brillouin measurements for d = 13 nm show the direction of the sagittal
plane rather than indicating the elastic properties of the PMMA film. To obtain information on
very thin layers, Forrest et al [5] experimentally investigated stacks of (PS/PI)N ,N = 1, . . . , 5,
layers with an overall thickness of d = 160 nm. To explain their Brillouin data, they calculated
the dispersion curves using an effective-medium theory. To obtain more information, we
calculated the dispersion curves exactly for each experiment (N = 1, 3, 5) [15, 16].

This paper is organized as follows. Section 2 gives the theory for layered films on a
substrate. Section 3 is devoted to the application to PMMA layers on Si(100). Section 4
contains results and a discussion.

2. Theoretical aspects

2.1. The vibrations of a system of N layers

In a system of N layers with thicknesses d1, . . . , dN and plane interfaces, we assume perfect
connection of adjacent layers, i.e. the displacements and the normal components of the stress
tensor are continuous. Thus a plane sound wave with frequency � and wave vector �k goes
through the system with the same sagittal plane (spanned by �k and the layer normal) and
k‖ (component of �k parallel to the layer) in all layers. Therefore for the eigenvibrations of
the layered system the relevant parameters are (�, �k‖), i.e. �, k‖ and the sagittal plane. See
figure 1.

In the unbounded �th layer, the equations of linear elasticity theory lead to plane-wave
solutions for the displacements, �u0 exp(−i�t + i�k · �r). There are six waves with the given
parameters: sagittal plane, |k‖| and �. A linear combination of them with six coefficients
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Figure 1. General scenario.

�A� = (A1, . . . , A6)
+
� is the general expression for the vibrations of the layered system1:

�u(�)(�, �k‖; �r, t) = e−i�t+ik2x2+ik3x3 U(�)(�, �k‖; ξ) �A� (1)

with U(�) a 3 × 6 matrix depending on the elastic constants and the density of the layer; ξ
is the local coordinate in the x1-direction with the origin at the middle of the layer. Using
Hooke’s law, we obtain from equation (1) the three components �σ1 = (σ11, σ21, σ31)

+ of the
stress tensor normal to the interfaces:

�σ (�)1 (�,
�k‖; �r, t) = e−i�t+ik2x2+ik3x3 S(�)(�, �k‖; ξ) �A� (2)

with S(�) a corresponding 3 × 6 matrix. In terms of equations (1) and (2) we obtain the inner
boundary conditions between the �th and (� + 1)th layers (continuous ui and σi1):

U(�)(�, �k‖; d�/2) �A� = U(�+1)(�, �k‖; −d�+1/2) �A�+1 (3)

S(�)(�, �k‖; d�/2) �A� = S(�+1)(�, �k‖; −d�+1/2) �A�+1. (4)

We can write this system of equations as
�A�+1 = M�+1,�(�, �k‖) �A�. (5)

The 6 × 6 transfer matrix M�+1,� depends on �, �k‖, the densities, the elastic constants and
the thicknesses (d�, d�+1) of both layers. The unknown coefficient vectors of all layers can be
derived from �A1. �A1 is to be determined according to the boundary conditions at the outer
surfaces of the layer system, e.g. boundary conditions (I): both outer surfaces are free. In
terms of equation (2) they can be written as three equations for �A1 and three equations for �AN :

S(1)(�, �k‖; −d1/2) �A1(�, �k‖) = 0 (6)

S(N)(�, �k‖; dN/2) �AN(�, �k‖) = 0. (7)

With the transfer matrices of all layers, equation (5), �AN may be expressed in terms of �A1. From
equations (6) and (7) we arrive at a system of six equations for the six unknown coefficients
�A1 of the first layer of the system:

MI(�, �k‖) �A1(�, �k‖) = 0. (8)

For each sagittal plane and k‖ (i.e. �k‖) the eigenvalue equation det MI(�, �k‖) = 0 gives an
infinite number of discrete eigenfrequencies �jI (�k‖), j = 1, 2, 3, . . .. To calculate the assoc-
iated normal modes, we introduce the following normalization for layer systems:

N∑
�=1

ρ�

∫ d�/2

−d�/2
|�uj (�k‖; �r)|2 dξ = 1. (9)

1 �v+ means the transposed vector.
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If we consider the half-space instead of the N th layer, the corresponding integral runs from 0
to infinity. This integral converges in the region investigated: �/k‖ < v′

lim (non-propagating
modes in the substrate). It can be shown that the normal modes are then mutually orthonormal:∫

V

ρ(�r)�uj (�k‖; �r) · �uj ′∗(�k′
‖; �r) dV = δjj ′δ(�k‖ − �k′

‖). (10)

Each vibration of the layered system can be expanded in normal modes:

�u(�r, t) =
∑
j

∫
Qj(�k‖; t)�uj (�k‖; �r) dk2 dk3. (11)

The normal coordinates Qj(�k‖; t) are independent harmonic oscillators with the equations
of motion Q̈j = −�j2Qj . Their quantization leads to the following expression in terms of
creation and annihilation oscillator operators:

Qj(�k‖; t) =
√

h̄

2�j(�k‖)
{
aj (�k‖)e−i�j (�k‖)t + a+

j (
�k‖)ei�j (�k‖)t

}
. (12)

To calculate the Brillouin intensities (section 2.3), we use the thermal averages

〈a+
j (

�k‖)aj ′(�k′
‖)〉 = nj (�k‖)δjj ′δ(�k‖ − �k′

‖)

〈aj (�k‖)a+
j ′(�k′

‖)〉 = (nj (�k‖) + 1)δjj ′δ(�k‖ − �k′
‖)

(13)

with the mean occupation number nj (�k‖) = (eh̄�j (�k‖)/kBT − 1)−1.

2.2. Mode polarizations

For composites with isotropic layers, the eigenmodes always can be separated into p-modes
(they involve only displacements in the sagittal plane; e.g. Rayleigh and Sezawa modes) and
a-modes (with anti-plane displacements, i.e. polarized vertical to the sagittal plane; e.g. Love
modes). Also in our examined system, with cubic Si substrates and isotropic PMMA layers
in the sagittal planes (010), (001), (011) the modes decouple into p-modes and a-modes. For
p–p polarized light the elasto-optic mechanism shows p-modes (sagittal modes) only: these
we consider in this paper.

2.3. Brillouin intensities due to the elasto-optic effect

Brillouin light spectroscopy devices measure the spectral density due to thermally excited
phonons [17, 18]:

S(�q, ω) ∼
∫ ∞

0
ei(ω−ωI)t 〈δε∗SI (�q; 0), δεSI (�q; t)〉 dt (14)

with the spatial integration over the illuminated volumeV of the dielectric constant fluctuations:

δεSI (�q, t) ≡
∫
V

�eS δε(�r, t)�eI ei�q·�r d�r �q ≡ �k′
I − �k′

S. (15)

For p–p polarized light, δεSI = δε33, i.e. �E is vertical with respect to the scattering plane, which
is the 1, 2-plane in this paper. The elasto-optic effect in the first approximation is described
by the Pockels tensor Pij ; e.g. for orthorhombic matter,

δεSI (�r; t) = δε33(�r; t) = P33u3,3 + P13u1,1 + P23u2,2. (16)

〈· · ·〉 is a time-averaged correlation function. In most theoretical calculations the ensemble-
averaged correlation function is considered instead; this means that the systems are assumed
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to be ergodic. For one-phonon processes it is convenient to deduce the above correlation
function from the ensemble-averaged products of creation and annihilation operators of single
modes [19]. From the normal-mode expansion, equation (10), we obtain

δε
j

33(�r; t) =
∫

dk2 dk3 Q
j(�k‖; t) δεj33(

�k‖; �r) (17)

where in the �th layer the expression δεj33(
�k‖; �r) is given by

δε
j

33(
�k‖; �r) = eik2x2+ik3x3

{
P
(�)
33 ik3U(�)3 + P (�)13 U(�)1,1 + ik2P

(�)
23 U(�)2

}j �Aj� (18)

with U(�)i being the ith row of the 3×6 matrix U(�). Now we calculate δε33(�q; t) from equation
(15). If the volume V is sufficiently large in the x2- and x3-directions, the x2-integration gives
the δ-function δ(k2 − q‖) and the x3-integration gives δ(k3). This means that the integration
selects modes with

�k‖ = �q‖ = (0, q‖, 0). (19)

Therefore we obtain

δε
j

33(�q; t) = Qj(�q‖; t)I j (�q) (20)

with the integration over the illuminated volume in the x1-direction:

I j (�q) =
N∑
�=1

e−iq⊥(�)x(�)
∫ d�/2

−d�/2
e−iq⊥(�)ξ (P

(�)
13 Uj (�)1,1 + iq‖P

(�)
23 Uj (�)2 ) �Aj� dξ. (21)

Equation (19) and equation (21) show that a-modes are not visible when using p–p scattering,
because they have no components in the scattering plane.

Now we are able to calculate S(�q, ω):

S(�q, ω) ∼
∫ ∞

0
ei(ω−ωI )t dt

∑
j,j ′
I j (�q)I j ′∗(�q)〈Qj∗(�q‖; 0),Qj

′
(�q‖; t)〉

=
∫ ∞

0
ei(ω−ωI )t dt

∑
j

|I j (�q)|2 h̄
2�j

{
(nj (q‖) + 1)e−i�j t + nj (q‖)ei�j t

}
.

Finally we arrive at

S(�q, ω) ∼
∞∑
j=1

{
(nj (q‖) + 1)δ(ω − ωI +�j(q‖)) + nj (q‖)δ(ω − ωI −�j(q‖))

} h̄|I j (�q)|2
2�j(q‖)

.

(22)

For room temperature, nj ≈ nj + 1 ≈ kBT /h̄�j holds.

2.4. A-scattering and 180◦ scattering

There are two well known scattering geometries (figure 2) of unreflected light beams in layered
films (without birefringence).

• A-scattering (e.g. for a free-standing film): the incident angle� between �kI and the layer
normal is the same as the scattered angle �. As a result, within each layer of the film the
difference �q ≡ �k′

I − �k′
S is parallel to the film:

q‖ = 2kI sin� q⊥ = 0. (23)
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Figure 2. Scattering geometries. IB: incident laser beam; SB: scattered beam; R: reflecting
interface. Left: A-scattering and 180◦ scattering. Right: RI�A scattering.

• 180◦ scattering (e.g. for a film on a substrate): in the layer with the refractive index n,
the relevant difference vector �q ≡ �k′

I − �k′
S = 2�k′

I does not point in the layer direction:

q‖ = 2kI sin� q⊥ = 2kI
√
n2 − sin2�. (24)

With backscattering geometry, we observe in the first approximation the direct and one reflected
beam at the interface (say the Si surface), i.e. 180◦ scattering and A-scattering, the latter
diminished in intensity. This was described as RI�A scattering for a PET film on silicon by
Krüger et al [1].

3. PMMA layers on Si(100) substrates

Using Brillouin light spectroscopy in the 180◦ backscattering geometry, we investigated two
samples: PMMA layers of thicknesses d = 225 nm and d = 13 nm on Si(100) substrates. The
angles recorded between the surface normal and incident laser beam were� = 35◦, 40◦, 45◦,
50◦ and 55◦. The incident light was polarized with �E vertical to the scattering plane (defined
by its wave vector �kI and the surface normal).

To give a concrete example, we continue the numerical analysis with the cubic elastic
constants for bulk silicon (c′11 = 166 GPa, c′12 = 63.9 GPa, c′44 = 79.6 GPa, ρ ′ = 2.33 g cm−3)
and assumed isotropic elastic constants for bulk PMMA (c11 = 8.54 GPa, c44 = 2.12 GPa,
ρ = 1.18 g cm−3). The latter we derived from our measurements on a thick film (d > 100µm)
produced by dip-coating using the same parent material as the thin films were prepared from.

3.1. Regions in the (k‖d,�d) plane: SAWs and pseudo-SAWs

Propagating plane sound waves �u0 exp(−i�t + i�k · �r) in isotropic PMMA exist only for
�/k‖ � vT = 1.34 km s−1 (transverse threshold).

The threshold for propagating plane sound waves in cubic Si depends on the sagittal
plane and the polarization. For p-modes in the sagittal planes (010) and (001), it is
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v′
lim(010) = 5.65 km s−1, and it is v′

lim(011) = 5.83 km s−1 in the sagittal plane (011).
For comparison,

√
c′44/ρ

′ = 5.84 km s−1.
In the PMMA region, �/k‖ � v′

lim, p-modes are PMMA vibrations decaying into the
Si substrate. The composite modes are guided waves in the PMMA layer: surface acoustic
waves, SAWs.

We call the remaining part of the (k‖d,�d) plane the Si region: �/k‖ � v′
lim, although

the modes of the composite consist there of PMMA and Si vibrations. Composite modes with
�/k‖ > v′

lim but with speeds below the longitudinal threshold are called pseudo-SAWs. They
are partially confined to the PMMA film.

3.2. The outer boundary conditions

• (I) A free system of two layers: PMMA (thickness d) on Si(100) (thickness d′). For
the given sagittal plane and k‖d , the eigenvalue equation det MI(�d, �k‖d) = 0 yields an
infinite number of discrete eigenfrequencies �jI d, j = 1, 2, 3, . . .. In the Si region the
dispersion curves are very dense—and become even more so as d ′/d becomes larger.
In the PMMA region, the numerical solution becomes problematic for growing q‖d (see
section 4.1). Therefore we consider boundary condition II.

• (II) A PMMA layer of thickness d on a Si(100) half-space. For the free PMMA surface,
we have the three equations (6) for the PMMA coefficients �A1. From the boundary
condition of limited displacements as x1 → ∞, we have again three equations for the
Si coefficients �A2. Using the transfer matrix, we write �A2 = M21 �A1, so we arrive at six
equations for the six unknown coefficients �A1:

MII(�d, �k‖d) �A1(�d, �k‖d) = 0. (25)

Without numerical problems, the dispersion equation det MII(�d, �k‖d) = 0 leads to
discrete dispersion curves �jII(k‖d) in the PMMA region (�/k‖ < v′

lim) (see figure 3).
In the Si region there is a continuum of eigenfrequencies; i.e. no dispersion curves are
defined.

• (III) A PMMA layer of thickness d with one surface free and the other fixed. There
are, once more, the three equations (6) for the free surface, and also three equations for
the clamped surface:

S(1)(�d, �k‖d; −d/2) �A1(�, �k‖) = 0 (26)

U(1)(�d, �k‖d; d/2) �A1(�, �k‖) = 0 (27)

or, in convenient notation,

MIII(�d, �k‖d) �A1(�d, �k‖d) = 0. (28)

There are infinitely many discrete dispersion curves �jIII(k‖d), j = 1, 2, 3, . . .. They are
deposited in the Si region and in the PMMA region; see figures 3 and 6, later.

4. Results and discussion

4.1. Dispersion curves

BLS backscattering experiments determine the sagittal plane which is the scattering plane, and
it selects

k‖ = q‖ = 4π

λI
sin�. (29)
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Figure 3. Dispersion curves. (II) a PMMA layer on a Si half-space: thick curves: grey in the
scattering plane (001) and black in the plane (011) with respect to the Si symmetry. (III) for a
fixed substrate: thin black curves and •: our measured Brillouin peaks for d = 13 nm (q‖d < 0.3)
and d = 225 nm (3 < q‖d < 5); grey straight line: 2πf/q‖ = v′

lim(001); black straight line:
2πf/q‖ = v′

lim(011). The top and bottom panels show different sections of the f d versus q‖d
plot.

The condition det M(q‖d,�d) = 0 (from equation (8), (25) or (28)) yields the dispersion curves
�j(q‖d)with� = 2πf . Different sections of the same plot of the dispersion curves, f d versus
q‖d (figure 3), represent the experiments on different samples: d = 13 nm (q‖d ≈ 0.18–0.24),
d = 225 nm (q‖d ≈ 3.2–4.5) and e.g. d = 900 nm (q‖d ≈ 13–18).

Numerical problems arise with the boundary condition (I): a free double layer: PMMA
(d) on Si(100) (d ′) for large d ′/d . In the Si region, �/q‖ > v′

lim, the set of dispersion curves,
�
j

I (q‖d), becomes denser as d ′/d grows and the calculation needs more time. The value of
d ′/d is limited due to the resolving power of the computer. d ′/d → ∞ leads to the boundary
condition (II) with a continuous spectrum (no discrete dispersion curves). In the PMMA region,
�/q‖ < v′

lim, the set of dispersion curves�jI is nearly independent of d ′/d. But the calculation
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of the dispersion curves and modes is limited to small q‖d. For example, if d ′/d = 10 the
dispersion curves j = 1, 2, 3, 4 can still be calculated for q‖d = 5, but the accuracy is no
longer sufficient for the modes. See the irregular hatching in figure 6, later. The reason for this
is the gigantic magnitude of det MI(q‖d,�d) for (q‖d,�d) between the dispersion curves, due
to the Si partial waves. The boundary condition (II) avoids these exponentially growing terms.

For investigations of SAWs (�/q‖ < v′
lim) the relevant boundary condition is (II); see

figures 3, 4, 5. The dispersion equation can be solved for the whole region without numerical
problems. The dispersion curves �jII(q‖d) are nearly the same as the curves �jI (q‖d). For
d ′ = 10d , visible differences are already limited to q‖d < 0.7. With growing PMMA layer
thickness d , the boundary conditions become unimportant. Asymptotically as q‖d → ∞, the
dispersion curves for the boundary conditions (I), (II) and (III) coincide for each j :

�
j

I (q‖d) ∼ �jII(q‖d) ∼ �jIII(q‖d) j = 1, 2, 3, . . .. (30)

The number of dispersion curves grows linearly with q‖d. Calculation of intensities becomes
necessary to mark the relevant segments.

0 2 4 6
q||d

0

2

4

6

fd
  (

G
H

z 
µm

)

f
180

d

Figure 4. Dispersion curves and Brillouin intensities for (II): a PMMA layer on a Si(100) half-
space, with scattering plane (001). •: our measured Brillouin peaks for d = 225 nm; A-intensities:
grey hatching; 180◦ intensities for d = 225 nm: black hatching; straight lines: (2πf/q‖)2 = c44/ρ,
c11/ρ, c′44/ρ

′, c′11/ρ
′ and 2πf/q‖ = v′

lim(001).

In isotropic systems the dispersion curves �jII(q‖d) are the same for each sagittal plane
containing the layer normal, but with cubic silicon this is not the case. Numerically, we
consider the scattering planes (011) and (001) with respect to the silicon symmetry. (010) has
the same properties as (001). In these planes the modes disintegrate into shear horizontal and
sagittal modes. And we consider only sagittal modes, since only these are visible with p–p
backscattering. In the vicinity of the limiting line �/q‖ = v′

lim, the (011) and (001) curves
clearly differ; see figure 3. But at some distance away (�/q‖ < 0.8v′

lim), one can neglect the
difference. Than one may even regard the substrate as isotropic; see figure 5.
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Figure 5. Dispersion curves and Brillouin intensities for (II): a PMMA layer on a Si half-space.
The calculation was with an isotropic substrate (c′11, c

′
44, c

′
12 = c′11 − 2c′44). A-intensities: grey

hatching; 180◦ intensities for d = 900 nm: black hatching; straight lines: (2πf/q‖)2 = c44/ρ,
c11/ρ, c′44/ρ

′, c′11/ρ
′.

With the boundary conditions (II) we obtain dispersion curves only in the PMMA region.
To get insight into the Si region, e.g. for pseudo-SAWs, we calculated dispersion curves with
the boundary condition (III); see figures 3 and 6. The dispersion curves �jIII(q‖d) explain
the pseudo-SAWs of the d = 225 nm sample. Also, the boundary conditions (I), figure 6,
test the Si region. For d ′ � d , the dispersion curves densely cover the region and deliver no
information. We need the intensities.

4.2. Intensities due to the elasto-optic effect

At each point of the dispersion curves we calculate the coefficients �A1 and, with the transfer
matrix, also �A2. The displacements are given by equation (1). Normalized using equation (9),
they yield the normal modes.

The intensity in equation (22) should be calculated from the integration, equation (21): the
factor exp(−iq⊥ξ) under the integral is 1 for A-scattering. For 180◦ scattering it depends on
the refractive indices of the layers; see equation (24). For cubic matter, P23 = P13 holds; thus
we have to consider only one Pockels constant for each layer. For guided modes the depth of
penetration into the substrate is small. Therefore we expect only a small contribution from the
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Figure 6. (I) A PMMA layer (d = 225 nm) on a Si(100) layer (d ′ = 10d). The scattering
plane is (001) with respect to the Si symmetry. •: our measured Brillouin peaks; A-intensities:
grey hatching; 180◦ intensities: black hatching; black curves: dispersion curves (III) for a
fixed substrate; straight lines: (2πf/q‖)2 = c44/ρ, c11/ρ, c′44/ρ

′, c′11/ρ
′ and 2πf/q‖ = v′

lim(001).

substrate, such that the constant P ′
13 (for the substrate) becomes less important. Nevertheless,

we calculate the intensities with P ′
13 = P13 = 1 and P ′

13 = 0, P13 = 1 for comparison.
We calculate A-intensities and 180◦ intensities separately (thought they could interfere) and
show them with an appropriate overall factor as hatching (bars of length ∼|J j |2/�2) along the
dispersion curves. Figures 4–6 show the results with P ′

13 = P13 = 1. With P ′
13 = 0, P13 = 1

we obtain nearly the same results as in figures 4 and 5. In the vicinity of the d = 225 nm
measurements, the difference is generally much less then 10%.

A-intensities (q⊥ = 0) depend only on q‖d. They can be illustrated in one plot for
samples with different layer thicknesses (grey hatching in figures 4, 5 and 6). They show
the predominantly longitudinal modes. The visible segments of the dispersion curves lie in
a region around the straight line �/q‖ = vL(PMMA). This region decreases with q‖d. For
q‖d = 18 (e.g. for � = 55◦, d = 900 nm) there are about 40 dispersion curves, but only one
shows marked intensity.

180◦ intensities (q⊥ �= 0) depend on q‖d and on q⊥(�)d. For backscattering geometry, in
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the �th layer, the difference vector, �q = �k′
I − �k′

S = 2�k′
I , has the magnitude q = 2n�kI , where

n� is the refractive index of the layer. Therefore we have

q⊥(�) =
√
(2n�kI )2 − (q‖)2 for q‖ < 2n�kI . (31)

We then exactly solve the integral, equation (21). In figures 4, 5 and 6 the resulting 180◦

intensity is shown as black hatching.
To obtain an estimate of where the 180◦ intensities are localized in the f d versus q‖d plot,

we discuss sufficiently thick layers. For p–p polarized light, a Brillouin peak appears from
the longitudinal sound waves of the �th layer at � = qvL(�). Therefore we expect for our
examples a maximum of intensity in a region around

f 180 = vL 2n1/λI . (32)

The exact numerical calculations confirm this estimate. The plot of the dispersion curves
(f d versus q‖d) shows different active horizontal stripes for PMMA layers with different
thicknesses d (see figures 4 and 5). In these examples the widths of the stripes 2fd are
approximately 2 GHz µm. The active frequency interval 2f therefore becomes smaller, as
1/d , for thicker PMMA layers.

4.3. Pseudo-SAWs

For v′
T < �/q‖ < v

′
L the modes are guided only partially; their transverse partial waves lose

energy into the substrate. To get insight into this region, we consider the boundary condition
(I): a PMMA layer of thickness d on a Si(100) layer of thickness d ′. In figure 6 we mark
the calculated points of the dispersion curves for d ′ = 10d. The hatching (vertical bars) is
proportional to the intensities calculated with equation (22). If we enlarge the thickness d ′/d
of the substrate, the set of dispersion curves becomes denser. The A-intensities (grey hatching)
grow. They are located near the �/q‖ = v′

L line: they come from the longitudinal partial
waves of the substrate. But the pattern of 180◦ intensities for d = 225 nm (black hatching)
does not really change with growing d ′/d. It appears in the vicinity of the observed pseudo-
SAWs of the sample with d = 225 nm. The relative intensity of the pattern is weak for the
highest frequencies, but there the measured Brillouin intensities are weak too. We have shown
all of our measured Brillouin peaks as black bullets of the same size, even if their relative
intensity was very weak (e.g. for q‖d = 3.53: f d = 4.32, 4.54 GHz µm; and for q‖d = 4.21:
f d = 4.43, 4.45 GHz µm).

Another explanation of the measured pseudo-SAWs for the d = 225 nm sample comes
from the dispersion curves with the boundary condition (III), the continuous black curves
in figure 6. Their neighbourhood of the measurements shows that the pseudo-SAWs for
d = 225 nm are predominantly PMMA vibrations, while the substrate is scarcely involved.

For two of the four experiments with the d = 13 nm sample, we observed weak pseudo-
SAWs too. They are located well below the dispersion curves (III); see figure 3. They cannot
be explained in terms of the elasto-optic effect on sagittal modes.

4.4. Very thin PMMA films (d < 15 nm)

The measured Brillouin peaks lie accurately on one line—the dispersion curve of the scattering
plane (001) with respect to the Si symmetry; see figure 3. (010) has the same properties. But
the dispersion curve of the scattering plane (011) is clearly different.

We also examined the sensitivity of the dispersion curves to the elastic constants and ρ
for the layer. As an example we show in figure 7 three sets of dispersion curves due to the



Guided acoustic waves in layered polymer films 7965

sagittal plane (001). The constants were from section 3, and moreover C44 ± 40%. One can
see that the sensitivity is generally not sufficient for determining elastic constants for very thin
single ad-layers (d < 15 nm). An important task is to study very thin layers, e.g. to test the
assumed changes of the elastic properties, when the layers become smaller. Forrest et al [5]
treated this problem in investigating layer systems. Their Brillouin measurements on stacks
of (PS/PI)N layers with an overall thickness d = 160 nm (N = 1, 3, 5) are very interesting.
But their data analysis, based on an effective-medium theory, can be improved, by performing
exact calculations for the different layer systems on silicon [15, 16].
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Figure 7. The sensitivity of the dispersion curves to c44; boundary condition (II) for the (001)
sagittal plane relative to the Si symmetry; thick grey curves: for c44 = 2.12 GPa; thin black curves:
for c44 ± 40%; •: our measured Brillouin peaks for the sample with d = 13 nm.

5. Conclusions

The theory of surface BLS on layered systems has been under development for a long time.
Single Brillouin spectra are completely explained and the elastic properties of ad-layers have
been determined in many cases. Questions remain concerning the changes of elastic properties
for different boundary conditions of very thin layers as compared to the bulk. Inter-layer and
adhesion problems that arise are still an active field of research.

Motivated by our BLS experiments for PMMA layers (d = 13 nm, d = 225 nm) on
silicon, we rederived a numerical calculational scheme including boundary conditions ((I),
(II), (III)). Therein, we investigated unusual aspects in order to get an overview. This could
help with planning of further experiments.

In the f d versus q‖d plane we found different regions of sensitivity to the layer properties,
the substrate and the boundary conditions. For example, in the vicinity of �/q‖ = v′

lim the
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dispersion curves are sensitive to the substrate and the boundary conditions. One can clearly
distinguish different scattering planes relative to the symmetry of the substrate. But it is
impossible to get precise information on the elastic properties of very thin single ad-layers
(d < 15 nm).

For every point of the dispersion curves, we calculated the sagittal modes, the 180◦

intensities and reflection-induced A-intensities due to the elasto-optic effect. We show these
intensities for a large area of the set of dispersion curves as bars (hatching) of proportional
length. We have not yet considered the ripple intensities. Their amplitudes are proportional to
the shear components of the sagittal modes. As a film gets thicker the increasingly dominant
contribution is from the elasto-optical response of the film [7, 21]. In the end, for concrete
experiments, the interference of all contributions must be taken into account.

We were able to explain our d = 225 nm experiment completely, including the pseudo-
SAWS. Also, the guided waves for d = 13 nm lie accurately on the calculated dispersion curve
for the scattering plane (001) in relation to the silicon symmetry. But the weak pseudo-SAWs
seem not to be due to the elasto-optic response of the sagittal modes.

In figure 5 our calculations for a virtual experiment with d = 900 nm show a visible
region around 2πf A/q‖ = vL(PMMA) (A-scattering). Additionally this figure shows a small
visible horizontal stripe (180◦ scattering) around f 180 = 2vL(PMMA)n(PMMA)/λI . This explains
the scattering mechanisms investigated and the crossover to thicker ad-layers, where RI�A
scattering was observed [1].

The investigation of pseudo-SAWs using boundary condition (I) to calculate intensities
is also new here. It completes the Green’s function method used by Akjouj et al [20]. The
density of states shows resonances in the substrate region �/q‖ > v′

T , such that they could
extend the dispersion curves for guided waves into this region. Akjouj et al found, very close
to these curves for an Al layer on W (except the first two), the dispersion curves of an Al slab
having one surface free and the other rigidly bound (due to the large difference between the
elastic constants of W and Al). This corresponds to our observation that the measured pseudo-
SAWs of the d = 225 nm PMMA layer on Si are described by the boundary condition (III).
The advantage of our approach concerns the Brillouin intensities, which match the relevant
segments of the dispersion curves. Also, we incorporated the cubic anisotropy of the substrate.
Finally, we were able to confirm our calculations by means of experiments.
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